Suggested Formulas to know for the ACT

General Formulas:

Mean (Averages): $\frac{\text { Sum of the items }}{\text { Number of items }}$
Median: The middle number when numbers are arranged in numerical order. If there is an even amount, find the mean of the two numbers in the middle.

Mode: The number that occurs most frequently
Range: Largest number - Smallest number
Probability: $\frac{\text { Desired outcomes }}{\text { Possible outcomes }}$
Percents: $\frac{i s}{o f}=\frac{\%}{100}$
Average Speed $=\frac{\text { total distance }}{\text { total time }}$
Distance $=$ rate \cdot time
Algebra:
Slope between two points: $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ (given two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$)
Slope-Intercept Form: $y=m x+b$ (where m is the slope and b is the y-intercept)
Midpoint: $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$ (given two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$)
Quadratic Formula: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\left(a, b\right.$, and c come from $\left.y=a x^{2}+b x+c\right)$
Distance Formula: $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ (given two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$)

Geometry:

($/$ is length, w is width, h is height, r is radius, b is base)

Perimeter of a Rectangle: $P=2 l+2 w$
Area of a Rectangle: $A=l w$
Area of a Parallelogram: $A=l w$

Volume of a Rectangular Solid: $V=l w h$
Area of a Trapezoid: $A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$
Area of a Triangle: $A=\frac{1}{2} b h$
Pythagorean Theorem: $a^{2}+b^{2}=c^{2}$ or leg $^{2}+$ leg $^{2}=$ hypotenuse 2

Special Right Triangles:

Circumference of a Circle: $C=2 \pi r$
Arc Length of a Sector: ArcLength $=\frac{\text { radiansof sector }}{2 \pi}\left[2 \pi r\right.$ or ArcLength $=\frac{{ }^{\circ} \text { of } \sec \text { tor }}{360^{\circ}} \square 2 \pi r$
Area of a Circle: $A=\pi r^{2}$
Area of a Sector of a Circle: $A=\left(\pi r^{2}\right)\left(\frac{{ }^{\circ} \text { ofcenter }}{360^{\circ}}\right)$ or $A=\left(\pi r^{2}\right)\left(\frac{\text { radiansofcenter }}{2 \pi}\right)$
Volume of a Cylinder: $V=\pi r^{2} h$
Equation of a Circle: $(x-h)^{2}+(y-k)^{2}=r^{2}$

Trigonometry:

Sine: $\frac{\text { opposite }}{\text { hypotenuse }}$
Cosine: $\frac{\text { adjacent }}{\text { hypotenuse }}$
Tangent: $\frac{\text { opposite }}{\text { adjacent }}$
Extra Formulas: $\sin ^{2} \theta+\cos ^{2} \theta=1$ and $\frac{\sin \theta}{\cos \theta}=\tan \theta$

Commented [jv1]: Need an image of 30-60-90 and 45-4590 triangles with labels

