"Calculator Race" Answers and Explanations

1. (D) Solve the problem by manipulating the fractions: $2 \frac{2}{7}+1 \frac{1}{3}=\frac{16}{7}+\frac{4}{3}=\frac{48+28}{21}=\frac{76}{21}=3 \frac{13}{21}$, (D). Contrast this with the calculator method: $2 \frac{2}{7} \approx 2+0.29=2.29 ; 1 \frac{1}{3} \approx 1+0.33=1.33$; and $2.29+1.33=3.62$. Now, convert the answer choices to find the right one:
(A) $3 \frac{2}{21} \approx 3+0.10=3.10$
(B) $3 \frac{3}{21} \approx 3+0.14=3.14$
(C) $3 \frac{3}{10}=3+0.30=3.30$
(D) $3 \frac{13}{21} \approx 3+0.62=3.62$
(E) $3 \frac{15}{21} \approx 3+0.71=3.71$

Thus, (D) is the correct choice. Note that having to convert the fractions in the answer choices makes the calculator an inefficient tool for solving this item (unless the calculator includes a "FRAC" key, in which case this would be an easy item).
2. (D) This problem is easily solved in your head. The dimensions are $250,250,300$, and 300 , which quickly adds to $500+600=1,100$. Doing the calculation in your head is faster than pushing the buttons on a calculator.
3. (D) This is another problem easily solved in your head: $\frac{\$ 18}{12}=\frac{\$ 3}{2}=\$ 1.50$ per rose. There is no advantage in using a calculator to solve this item.
4. (E) This item can be solved using a calculator: $\left(\frac{39}{61}\right)(100)=63.9 \%$, or 64%. But it is simple enough to solve by hand: the fraction is $\frac{39}{61}$, which is very close to $\frac{40}{60}=\frac{2}{3}$, or $66 \frac{2}{3} \%$. Therefore, the correct answer must be (E), 64\%.
5. (B) Again, it is faster to perform the calculations by hand rather than using a calculator: $4-|-7|=$ $|-4|-|5-12|=4-7=-3$.
6. (E) A formula problem like this appears as though made for a calculator solution, but in fact it too can be efficiently attacked without one: $F=\frac{9}{5}(34)+32$. If the 34 were 35 , then it would be possible to simplify the equation: $F=\frac{9}{5}(35)+32=(9)(7)+32=63+32=95$. So, the actual value is just a tad less than 95 , making 93 the correct answer.
7. (C) Again, a calculator simply isn't necessary: $\frac{3.1 \text { miles }}{20 \text { minutes }}=\frac{3.1 \text { miles }}{\frac{1}{3} \text { hour }}=(3.1)(3)=9.3$ miles per hour.
8. (E) Again, it's faster to do the calculations in your head. The radius of the circle is 5 , so the diameter is 10 , and the diameter is equal to the side of the square. Thus, the area of the square is $10 \cdot 10=100$.
9. (E) To solve this problem, it will be necessary to divide: $\frac{12 \text { ounces }}{0.03 \text { ounces }}=$ number of plastic fasteners . But you don't need a calculator: $\frac{1,200}{3}=400$ plastic fasteners.
10. (A) On this item, using a calculator could actually get you into trouble. A calculator will indicated that the square root of 81 is 9 and the square root of 49 is 7 , which means that a possible value for $x+y$ is 16 -not one of the answer choices. Of course, other possible values are -9 and -7 , which total -16 , or -9 and 7 , which total -2 , or 9 and -7 , which total 2 . Only (A) offers one of these choices: -16 .

